
Introduction to Cross-Coupling in RF Filter Design

Document No. tb-cross-coupling (150319)

by Robert A. Surette and Robert F. Liebe © 2000

Abstract

A filter design needs to take into account physical concerns such as size, weight, and 
cost, as well as performance considerations, including isolation, loss minimization, and 
group delay. We always design a filter for the best real-world overall combination of all 
these characteristics , and almost always we have to sacrifice a little performance in one 
parameter in order to improve another, such as the tradeoff of insertion loss and isola-
tion in all-pole designs. In many cases, cross coupling allows us to keep these sacrifices 
to a minimum. 
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RF filters
An RF filter sorts RF signals, attenuating some frequen-
cies while allowing others to pass. In doing so, it per-
forms three basic functions:

• it passes the signal that you wish to broadcast,

• it keeps you from interfering with signals of others, 
and

• it keeps others from interfering with your signal.

Depending on the design, a filter may either attenuate 
(band-reject type) or pass (band-pass type) a specific 
narrow bandwidth. Conventional RF filter design prac-
tice is to use a series of coupled resonant sections to 
increase the selectivity of the filter and broaden the 
desired band to allow room for sidebands. 

Figure 1 shows a couple of 
typical single-section band-
pass filters. Figure 2 shows a 
four-section band-pass filter.

Coupling

The coupling between reso-
nant sections can be achieved 
and modeled in a number of 
ways, one of which is shown 
schematically in figure 3. A 
phase shift of ± 90° is created 
as the signal passes through 
the coupling structure and into 
the next resonant section. This 
phase shift is due to the admittance/impedance inverting properties of the coupling structure and, through 
tuning, is how we create the desired bandwidth in the filter. Without proper coupling, the cavities would act 
as a single resonator with a slope parameter equal to the sum of the individual resonators. 

Frequency response and isolation

A common way to measure the performance of a filter is the frequency response diagram. Figure 4 is a dia-
gram showing the frequency response of several theoretical band-pass filters. Note the “plateau” constitut-
ing the pass band, where the attenuation is very low, and the sharp drop-offs at the edges of the plateau, 
indicating that frequencies outside the pass band are effectively attenuated, or isolated.

As resonant sections are added, the transition at the -3dB edge of the pass band yields sharper drop-offs, or 
more effective isolation.

Figure 1. Typical Band-Pass Filter Construction

Figure 2. Typical Four-Section Band-Pass Filter

Figure 3. Coupling Between Filter Segments



Meeting today’s tighter specifications

For years, the FM channel was relatively simple, with 
only the carrier and a stereo pilot. In the mid-1980s, 
the 67 kHz SCA (Subsidiary Communications Authori-
zation) became more widely used; then the 93 kHz 
SCA followed. The mid-nineties have brought DAB 
(digital audio broadcast). Each of these develop-
ments has increased utilization of the frequencies 
within allotted bandwidths.

Thus, improved filter performance is necessary to 
meet today’s tighter specifications. But improving 
the frequency response comes with tradeoffs:

Insertion loss

Although the transfer of energy through the filter is at 
a maximum at the center frequency, energy transfer 
is not perfect and some energy is lost in the 
process. The lost energy is turned into heat 
and dissipated within the resonant section. 
The measurement of how much energy is 
dissipated, measured in dB, is called inser-
tion loss. Some factors that determine how 
much energy will be lost are the Q (quality 
factor) of the components in the filter, the 
bandwidth of the filter and the number of 
resonant sections. 

Figure 5 shows how both the isolation and 
the insertion loss increase with the number 
of resonant sections.

Group delay

The signal takes a finite amount of time to 
pass through the filter. This delay is least at 
center frequency (f

0
) and increases as we 

get further away in both directions. Today’s complex broadcast signals use the full channel bandwidth; so it is 
important to minimize group delay difference.

When looking at a group delay diagram (figure 6), it is important to realize that the slight rise in group delay 
at center frequency is not significant; it’s the difference in group delay between center frequency and the 
edges of the pass band that can cause signal distortion.

Filter size and cost

As we add sections the filters become much 
larger and more cumbersome, and the cost in-
creases with the increase in materials - not to 
mention the problem of getting one up a flight 
of stairs or up to the 80th floor in an elevator!

The upshot

As the specifications tighten and the filter 
must be increasingly selective, the tradeoffs in 
filter performance, cost, and size may become 
prohibitive and alternative filter designs must 
be investigated.

Figure 4. Frequency Response, Theoretical Band-Pass 

Filters

Figure 5. Insertion Loss Increases with Additional Resonant 

Sections

Figure 6. Group Delay Difference Increases with Additional 

Resonant Sections



The math

Poles and zeros

How can we express a filter’s performance mathematically? In filter design and synthesis, transfer functions 
are used for this purpose. The derivation of a specific transfer function for filter synthesis requires in-depth 
circuit analysis and modern network theory, which is beyond the scope of this paper. However, in general, 
the transfer functions are a ratio of two polynomials of the complex frequency s, defined as:

 

where  j is the square root of -1 and , the frequency in radians per second, is 2 f.

From the generalized filter in figure 7, where the we have a voltage source E
S
, a source resistance R

S
, and a 

load resistor R
L
, the transfer function would be stated as 

where C is a real constant , S is the complex variable 
defined above, and S

X  
are the roots of the polynomial.  

The roots of the denominator D(s) are the frequencies 
at which the transfer function becomes infinite, and are 
called poles. The roots of the numerator N(s) are the 
frequencies at which the transfer function becomes zero 
and are called zeros. These complex frequencies can be 
plotted for evaluation and further transformation in the 
complex frequency plane as illustrated in figure 8, where 
each pole is represented by an x and each zero by an o.

Each pole and zero is achieved with a resonant section - an LC 
(inductive-capacitive) circuit or cavity. The number of resonant 
sections needed is thus determined by the complexity of the 
response required. 

The circus tent analogy

To gain a general idea of how poles correlate to frequency 
response, we can think of the frequency response of a filter as a 
“circus tent.” As shown in figure 9, the poles, each one created 
by a resonant section, hold up the top of the tent (the passband) 
while the sides of the tent drop away. 

Indeed, if we plot a frequency response with VSWR on the same 
chart for the same filter, it’s easy to see that the poles, which 
show up as dips in the VSWR, support the 
canopy of the frequency response.

The all-pole filter

The standard band pass filter design that 
we’ve considered so far is a special case 
known as an all-pole filter, for which the math 
analysis contains no roots in the numera-
tor. The frequency response therefore shows 
no zeros - or more precisely, the zeros are 
located approaching ± infinity. Hence, the 
“slopes” of the frequency response diagram 
taper off steadily as we move away from 
center frequency (figures 4 and 9).

Figure 7. Generalized Filter Network, Schematic 

Diagram

Figure 8. Poles and Zeros in the Complex 

Frequency Plane

Figure 9. Correlation of Poles and Frequency Response



Other solutions

If we could create zeros near the edges of the pass band, we could force the frequency response transition 
to be sharper. One way to do this is to add “band-reject” sections - that is, sections that are tuned to reject 
a specific frequency instead 
of passing it - for example, to 
use a six-section filter (figure 
10) where two of the sections 
are used as band-reject sec-
tions.  A filter such as this can 
be tuned so that the zeros are 
close to the pass band, increas-
ing isolation and decreasing 
the attenuation across the pass 
band compared to a six-section 
all-pole design (figure 11).

Since the amount of energy 
dissipated in the band-reject 
sections is much lower than 
that passed through the filter, 
we could make the band-reject 
sections a smaller size. Also, these could be 
coupled using cable and would be separate 
from the filter itself. While these construction 
features make this option more viable, cost 
and size remain a factor due to the added 
sections.

We can avoid these drawbacks of size, cost 
and insertion loss with cross coupling.

Cross coupling
In the filter shown in figure 10, we have 
increased isolation by adding two band-reject 
filters to our basic four-section band-pass 
filter. In doing so, we have added substan-
tially to the overall size of the filter, and also 
increased insertion loss due to the energy 
dissipated by the extra sections.

If instead we add a transmission line segment between 
the first and last band-pass sections (figure 12), we 
create a parallel transmission channel. This line seg-
ment is then tuned to achieve specific phase and mag-
nitude characteristics, so that unwanted frequencies at 
both ends of the filter cancel each other out. It there-
fore acts as a band-reject component, creating zeros at 
the edges of the pass band similar to those shown in 
figure 11.

The extra bulk and cost of the added reject sections is 
eliminated, and the increase in insertion loss that oc-
curred is now kept to a minimum, because we no longer 
have the power dissipation in the extra resonant sections.

Figure 10. Filter Consisting of Four Band-Pass Sections and Two Band-Reject 

Sections

Figure 11. Effect of Adding Two Reject Sections to Basic 

Band-Pass Configuration

Figure 12. Typical Cross-Coupled Filter Construction



Tuning

Tuning of cross-coupled filters is critical. There is a delicate balance between the placement of the zeros and 
the coupling factors within the filter, and without careful tuning of both the filter and the cross coupling, a 
less than optimal response will be attained. In figure 13 we can see the difference between an optimized 
filter and one that is not properly tuned. 

Although it takes more time to reach the desired tuning in a cross-coupled filter, the end result is a filter that 
has better transmission characteristics.

Conclusion: A real-world example
A typical IBOC transmitter uses frequencies at ± 100 to 200 kHz from center frequency, and needs -20dB iso-
lation at ± 300 kHz. Thus, this isolation needs to occur in the 100 kHz spans between ± 200 and ± 300 kHz. 
For this purpose, a four or six-section band-pass filter alone won’t do the job; a four-section cross-coupled 
band-pass filter is the solution.
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Figure 13. Frequency Response and VSWR for the Same Filter, Unoptimized and Optimized


