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Abstract

The FCC's adoption of rules concerning human exposure to non-ionizing RF radiation has cre-
ated interest in minimizing the downward radiation generated by broadcast antennas. This 
bulletin presents:

• a theoretical discussion of how an array of elements produces an elevation pattern

• the effects of changing bay-to-bay spacing on downward radiation

• elevation patterns for several practical arrays, varying the number of bays and the bay-to-

bay spacing (with constant amplitude and phase)

• the effects of modifying the amplitude of an array to produce a single lobe.
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Introduction
Effective January 1, 1986, the FCC adopted American National Standard (ANSI) C95.1-1982, limiting human 
exposure to nonionizing RF radiation. In some cases, it is possible to limit human exposure by installing 
the broadcast antenna in an inaccessible location or by fencing off the antenna site. Such remedies are not 
always available or practical. Then it becomes necessary to achieve compliance with the rules by manipulat-
ing the antenna's elevation pattern to reduce downward radiation. This paper explains how antennas create 
downward radiation and how the intensity of downward radiation can be minimized.

Antenna array theory
Antenna arrays operate on the principle of superposition of electromagnetic (EM) fields in space; when there 
are more than one source of EM fields, the total field at any point in space is simply the vector sum of the 
fields from each source at that point in space. In theory, summing the fields at some location due to multiple 
sources at another location is a simple concept; however, in practice, this quickly becomes cumbersome. 
Antenna array theory has developed some approximations and shortcuts to make the task of determining an 
array’s pattern easier.

The first approximation involves the distance from the array at which field intensity is to be determined. To 
simplify the math, only "far field" patterns are considered. 
In the far field, the EM fields radiated by the array can be 
approximated by plane waves.

The far field region is defined as anywhere in space that 
meets the condition: 

R > 2D2 / λ , 
as shown in figure 1, where R is the distance from the 
array, D is the length of the array (the physical aperture) 
and λ is the wavelength of the antenna. An example: For 
the five-bay full-wave-spaced antenna shown in figure 1, 
λ is about ten feet, so D is about 40 feet. 

Then:  R > 2D2 / λ
or: R > 2(40)2/10

or: R > 320 feet.
When R is less than 2D2 / λ, our simplifying assumptions become inaccurate and the calculated pattern is a 
poor approximation of the true pattern.

Two results of the far field assumption are our ability to use plane wave approximations, mentioned above, 
for the radiated fields, and the ability to separate the total array pattern into two components: one due to 
the characteristics of the radiators used (the "unit pattern") and the other due to the number and spacing of 
the radiators (the "array factor").

Plane waves propagate through space in a well known manner, the E and H fields being attenuated by 1/r 
and having a phase dependency of e-j β r where β = 2π/λ and r is the radial distance from the source to the 
point at which the plane wave is being observed. This will be useful a bit later to determine patterns.

Antenna patterns, in the most general case, vary in three dimensions or with three variables. The most com-
mon system for describing the pattern is the spherical coordinate system, using r, the distance from the origin 
(usually the antenna center of radiation) to the point of observation, φ, the angular displacement of the 
point of observation in the x-y plane from the x axis; and θ, the angular displacement of the point of observa-
tion from the +z axis in the plane containing the point and the z axis. This is shown in figure 2.

The more familiar x, y, z coordinate system could be used (and is used as a reference for the r , φ , θ system), 
but would result in much more complex equations. In the case of most broadcast antenna patterns, we use a 
normalized pattern where the maximum field intensity is set equal to unity, and we assume an omnidirection-
al azimuth pattern. These two assumptions will be made here, allowing us to eliminate r and φ as variables 
in our pattern; thus we look only at the elevation pattern, which varies only as a function of θ. If we call the 
total elevation field pattern F(θ), the use of the far field approximation allows us to write this in two parts:

Figure 1.  The Far Field Region



F(θ) = A(θ) E(θ)
where E(θ) is the elevation pattern of a single radiator and 
A(θ) is the array factor - that portion of the total elevation 
pattern due to the spacing, number, magnitude and phase of 
the array elements, no matter what type radiator each ele-
ment may be. Notice that if either E(θ) = 0 or A(θ) = 0, the 
total pattern, F(θ) = zero. This is where arrays are useful in 
controlling radiation: even if an individual radiator radiates 
power in an undesirable direction (such as downward), an ar-
ray can often be designed to nullify that effect and eliminate 
radiation in that direction. Let’s take a look at how this can 
be done.

Array factors for small arrays
For small arrays using only a few elements, a general idea of 
the array factor effect can be found by inspection. For now, 
we'll assume each radiator to be isotropic, i.e. one that radi-
ates equally in all directions. Figure 3a shows the geometry 
of a two-element full-wave-spaced array. The amplitude and 
phase of the current fed to each radiator are equal; they are 
indicated on the left of each radiator as 

 I = ie+j0, 
meaning unit amplitude and zero degrees phase. 

A plane wave leaving the top radiator, #1, and traveling vertically toward 
the bottom radiator, #2, reaches #2 with a phase shift of βd radians, where 
d is the spacing between the two radiators, i.e. d = λ . This results in 

βd = βλ = (2π/λ) * λ = 2π , 
which is equivalent to zero degrees. Therefore, the wavefronts from radia-
tors #1 and #2 are in-phase and add in the vertical direction, doubling the 
fields that would exist from only a single bay in these directions. 

At point P
1 
, or horizontal, the plane waves leaving radiators #1 and #2 both 

travel the same distance, r , and therefore, both experience a phase change 
of βr ; since #1 and #2 started in-phase and 
both experienced the same phase change 
getting to point P

1 
, they arrive at P

1
 in-phase and add in the horizontal direc-

tion. 

At point P
2
 , which is located 30° from the horizontal, a plane wave leaving 

#1 experiences a phase shift of βr
1
 , while #2 experiences a phase shift of 

βr
2
. Geometry shows that βr

1
 and βr

2
 always differ by πradians, or 180°. At 

30° from the horizontal, therefore, the array has a null. More calculations at 
different angles would result in the pattern shown in figure 3b.

If we wish to eliminate vertical radiation in a two-element array, we have 
the choice of either using a radiator whose individual pattern is zero in the 
downward direction, or modifying the array configuration to place a null in 
the downward direction. Figures 4a and 4b show the same two element array 
as in figure 2, except that the interbay spacing has been changed to λ/2.

If we follow through an inspection as we did for figure 3 for the downward 
direction, we find that the plane wave radiated by #1 is shifted by 

βd = βλ/2 = (2π/λ) * (λ/2) = π or 180° 
in getting to radiator #2. The two plane waves add out of phase to form a 
null in the array factor in the upward and downward directions. Further calcu-
lations result in the pattern in figure 4b for the array factor.

Figure 2.  Spherical Coordinate System

Figure 3a.  Geometry,

Two-Element Full-Wave-Spaced 

Figure 3b.  Elevation Pattern, 

Two-Element Full-Wave-Spaced 

Array



Note that the array pattern has a null in the 
vertical directions regardless of the element 
pattern of the individual radiators.

The same mathematical equations can be used to calculate the 
pattern of a three-element half-wave-spaced array, as shown in 
figure 5.

The calculated array pattern shows relative field of approximately 
0.3 in the vertical; i.e. at ± 90°. With an odd number of bays, the 
vertical radiation components from bays #1 and #2 cancel, leav-
ing only the energy level of bay #3. And because there are three 
radiators, that energy level is 1/3 of the total.

Array factors for larger arrays
As previously mentioned, inspection and a little thought can of-
ten give quite a bit of insight into the general shape of the array 
factor of simple arrays. For more complex arrays and/or more pre-
cise pattern results, a different analysis technique is useful. This 
requires viewing the array as if it were a receiving array rather 
than a transmitting array. (Reciprocity requires that the patterns 
be identical in the two cases.) In the following discussion, a six 
element array is used as an example, but an array of any size 
may be treated identically.

Figure 6 shows two schematic views of a six-element array. Figure 
6a shows a six-element corporate feed such as might be used 
on one face of a panel antenna. The phase shifters are all set to zero and are connected to the splitter (or 
combiner in receiving mode) by equal lengths of line, ensuring that all the radiators are fed in-phase. In a 
series-fed antenna array, the same purpose is served by feeding radiators at intervals of one-wavelength, or 
360 electrical degrees, along the feedline, whatever their physical physical spacing may be. 

Figure 6b shows the array in the same manner as figures 2 and 3: six equally-spaced isotropic radiators in a 
line. The radiators are arranged symmetrically around the center of the array and are numbered -3 to +3 for 
convenience later on. Spacing between each two adjacent radiators is d. Also shown is a plane wave inci-
dent on the array at an angle θ. The constant phase front of the plane wave is a straight line perpendicular 
to the direction of propagation and shown as a dotted line. Finally, the geometry of the wavefront incident 
on the array is expanded for radiators #2 and #3 so that geometric relations may more easily be seen.

Figure 4a.  Geometry,

Two-Element Half-Wave-Spaced Array

Figure 4b.  Elevation Pattern, 

Two-Element Half-Wave-

Spaced Array

Figure 5.  Three Element Half-

Wavelength Spaced Array and 

Antenna Pattern.

Figure 6a.  Schematic,

Six Element Array Feed



As seen in figure 6b, a wavefront incident on the array at an angle 
of θ will first encounter radiator #3. We can use this as a reference 
and call it "zero phase." Referring to the expanded view of radia-
tors #2 and #3, it is easily seen that the incident wave must travel 
further in order to reach radiator #2 than #3.

Corresponding to this increased distance of travel is a phase lag 
with respect to #3 of βL = βdcosθ. The two radiators, #3 and #2,  
then have excitations of 

Ie-j0 and Ie-jβdcosθ 
respectively. (The amplitude of the plane wave at each radiator 
will be nearly identical and, without any loss in generality, can be 
assumed to be unity.).

Now we return to the whole six element array. A quick look shows 
that each element has the same relationship with the element 
below it as #2 had with #3; i.e. lags it by e-jβdcosθ . This could just 
as easily be stated as: Each bay leads the one above it by e+jβdcosθ. 
Using this convention, we can find an excitation phase for each 
radiator in the array, where unity amplitude is assumed.

The plane wave will cause a current in each radiator, proportional 
in phase to the plane wave. The current in each radiator can be 
written as I

0
e-jθ , where θ is the phase of that radiator’s excitation. 

These currents then pass through the phase shifters where an ad-
ditional phase shift is added. The final current from each radiator 
can then be written as 

 

where θ
i
 is the phase solely due to the plane wave’s shift at the 

i
th
 radiator with respect to the reference point and α

i
 is the phase 

shift due to the i
th
 phase shifter.

The currents from all radiators are then summed in the combining 
network. Using radiator #3 as the zero phase reference point, this 
summation can be written as         

I
total

 = I
-3
 + I

-2
 + I

-1
 + I

1
 + I

2
 + I

3
 , 

and substituting in the actual currents:

If we assume all phase shifters to be neutral, i.e. to add zero phase shift (quite common in broadcasting) 
then this expression becomes

I
total

 = I
0
[e-j

0
 + e-jβdcosθ + e-2jβdcosθ + e-3jβdcosθ +e-4jβdcosθ + e-5jβdcosθ]

This expression could be plotted (as a function of θ) by taking the sum of real and imaginary parts and 
finding the magnitude. In many cases, this must be done; however, in this case, there are a few tricks that 

simplify it a bit more. If we factor out an e-5jβdcosθ/2 and rearrange terms slightly, the result is:

I
total

 = I
0
e-5jβdcosθ/2 [e-5jβdcosθ/2 + e+5jβdcosθ/2 + e-3jβdcosθ/2 + e+3jβdcosθ/2 + e-jβdcosθ/2 + ejβdcosθ/2]

Figure 6b.  Geometry of an Incident 

Plane Wave on a Six-Element Array



But: e±jx = cos x ± j sin x

So:     = 2I
0
e-5jβdcosθ/2 [cos(5βdcosθ) + cos(3βdcosθ) + cos(βdcosθ)]

This is the array factor.

The cosine of θ is zero when θ is an odd multiple of 90° or π/2. Looking at the array factor above, we see 
it is composed of terms all of which are in the form cos(nβdcosθ/2). We can use this fact to place a null in a 
desired location by making cos(nβdcosθ/2) go to zero at that location. In order for this to occur, nβdcosθ/2 
must be an odd multiple of π/2 for the direction, θ

0
 , at which we want a null. Looking at figure 6, we see 

that downwards (the most common direction of a desired null) is at θ
0
 = 0°. (Please note that this is different 

from the usual broadcast convention of displaying elevation patterns which use 0° as horizontal.) 

If we set: n β d cosθ / 2 = n π / 2

at: θ = 0°, where cosθ = 1

then: n β d (1) / 2 = n π / 2

or: β d = π  or  d = π / β 

But: β = 2 π / l 

thus: d = π λ / 2 π
Finally: d = λ / 2 
The foregoing demonstrates that in a half-wave-spaced array of isotropic radiators, the relative field inten-
sity at ± 90° from the horizontal is zero.

Figure 7 shows the array factor for a six element, one-wavelength (d = λ)-spaced array of isotropic radiators 
(i.e. theoretical radiators radiating equally in all directions) in polar format. Notice that the beam widths are 
wider at ± 90° than at 0°. Also note the levels of the side lobes at other angles (15°, 25°, 35°, 50°, etc.).

Now look at the plot in figure 8. This array is identical to that shown in figure 7 except that the spacing has 
been changed to half-wave. The array is now physically smaller. The number of side lobes has decreased; the 
width of the main lobe has increased compared to full wave spacing; and most importantly, the vertical radia-
tion lobes have been eliminated!

Factoring in the radiator element 

unit pattern
Restating the definition of the total eleva-
tion field pattern equation (from page 2):

F(θ) = A(θ) E(θ)
Up until now, we have used theoretical 
isotropic elements, assuming away the unit 
pattern of the elements [E(θ) = 1] - thus we 
have been able to focus on the array factor 
[A(θ)]. 

Now we need to consider the element unit 
pattern and its effect on the equation. In 
most cases, the unit pattern conforms to 
a cosine to the 1.5 power. The following 
figures use this estimate and yield results 
more representative of real antennas. (The 
calculated gains have a 4% feed system 
cumulative loss factor for each array, so 
that the values are both conservative and 
consistent with standard engineering prac-
tices.)

Figure 7.  Field Elevation 

Pattern Plot, Six-Bay, Full-

Wave-Spaced Array

of Theoretical Isotropic 

Radiators

Figure 8.  Field Elevation 

Pattern Plot, Six-Bay 1/2-

Wave-Spaced Array

of Theoretical Isotropic 

Radiators



Figure 9 is the elevation pattern for a six-
bay array of radiators equally spaced at one 
wavelength and uniformly fed. This pattern 
is representative of ring radiators as well as 
panels or stand-alone dipoles. Note that the 
maximum downward component is at approxi-
mately 70° depression angle, not at 90° as 
some people have suggested. 

Some radiators have more complex unit pat-
terns that do not follow the cos1.5 rule. There-
fore, in reality, the amount of radiation at 
±90° may not be zero.

Effect of spacing on power gain
The gain of an array can be maximized by 
adjusting the spacing between the radiators. 
Figure 10 shows an array of six bays spaced 
at 0.95 wavelength. Comparing figure 10 to 
figure 9, it will be seen that the only substan-
tive difference is the decrease in the minor 
lobe at about 70°. The antenna is a little 
more efficient, resulting in a slight power gain 
increase from 3.28 to 3.31.

For different numbers of radiators, the spac-
ing for maximum gain will differ. It is interest-
ing to note that the increase in gain comes 
mainly from reducing the energy in the lobe 
at 70°, while the other side lobes are essen-
tially unchanged.

In figure 11, the spacing has been reduced to 
0.90 wavelength. The gain is now 3.22, and 
the side lobes are noticeably different from 
those in figures 9 and 10.

Figure 12 shows a six-bay spaced at 0.75 
wavelength. The pattern is now quite differ-
ent from the last three. The sixth side lobe 
has disappeared, and the gain is now down 
to 2.76.

In figure 13, the spacing has been reduced to 
0.5 wavelength. This is the optimum spacing 
for reducing downward radiation, as shown 
previously. The gain is now 1.92, a reduction 
of 2.33 dB from that at full-wave spacing, and 
the total array aperture is now approximately 
25 feet, down from the original 50 feet. The 

major lobe is now wider, and there are only two minor lobes with virtually no energy below 75° of depression 
angle. This is the type of pattern which may satisfy some of the new standards for downward radiation, but 
because of the loss in gain, more transmitter output power is needed - an expensive option - or the gain can 
be recovered by adding more half-wave-spaced radiators.

Figure 14 is the result of maintaining the same physical aperture as the original six-bay shown in figure 9 by 
filling the gaps between bays with five additional radiators, and creating an eleven-bay half-wave-spaced 
array. 

The gain of this array is 3.44, which is slightly higher than the 3.28 gain of the original six-bay array. 

Figure 9.  Field Elevation 

Pattern Plots, Six-Bay Full-

Wave-Spaced Array

Gain = 3.28

Figure 10.  Field Elevation 

Pattern Plots, Six-Bay 0.95λ-

Spaced Array

Gain = 3.31

Figure 11.  Field Elevation 

Pattern Plots, Six-Bay 0.90λ-

Spaced Array

Gain = 3.22

Figure 12.  Field Elevation 

Pattern Plots, Six-Bay 0.75λ-

Spaced Array

Gain = 2.76



An eleven-bay array is not a practical an-
tenna system. A ten- or twelve-bay half-wave-
spaced array would be preferred; figure 15 
shows a ten-bay. Note that the ten-bay array 
has slightly less gain than the original six-
bay array. Comparing the six-bay wavelength 
spaced array (figure 9) to the ten-bay half-
wave-spaced array (figure 15), you will see 
that in this ten-bay array, radiation is dra-
matically suppressed beyond ±50° from the 
horizon - and this antenna is five feet shorter 
than the original 6-bay!

What we have just shown is that by changing 
the spacing of the elements, while maintain-
ing constant amplitude and phase to each 
element, we can modify the elevation pattern 
to substantially reduce downward radiation. 

Control of side lobes by amplitude 

modifications
Still using half-wave spacing, we will now 
manipulate the amplitude of the individual 
radiators to not only reduce the downward 
lobe, but to virtually eliminate all the side 
lobes, so that we end up with an antenna 
system that only has one main lobe.

For this comparison, we'll use a four-bay ar-
ray. Compare figures 16 (full-wave-spaced) 
and 17 (half-wave-spaced). As above, going 
to half-wave-spacing eliminates the side lobe 
at about 70° and reduces the gain substan-
tially.

Now we are going to reduce the amplitude 
of the two end bays of the same half-wave-
spaced antenna shown in figure 17. The re-
sults are shown in figure 18. As you can see, 
the side lobe at approximately 45° in figure 
17 has been almost eliminated, and the gain 
has been reduced to 1.15. If the amplitude 
of the two end bays is reduced further, the 
above minor lobe is totally eliminated, but 
the gain drops to 1.01 (figure 19). So the 
trade-off is between the gain of the array 
and the degree to which the minor lobes are 
reduced.

As before, we can recover the gain of the array by adding more radiators. Figures 20 and 21 show the el-
evation pattern of a six-bay half-wave-spaced array with reduced amplitude to the top two and bottom two 
radiators. Both show increased gain compared to the four-bays in figures 18 and 19.

The array in figure 21 has more amplitude reduction than the one in figure 20. Note that as with the four-bay, 
the additional amplitude reduction causes both further side lobe elimination and further gain loss.

Figure 13.  Field Elevation 

Pattern Plots, Six-Bay Half-

Wave-Spaced Array 

Gain = 1.92

Figure 14.  Field Elevation 

Pattern Plots, Eleven-Bay Half-

Wave-Spaced Array

Gain = 3.44

Figure 15. Field Elevation 

Pattern Plots, Ten-Bay Half-

Wave-Spaced Array

Gain = 3.14

Figure 16.  Field Elevation 

Pattern Plot, Four-Bay Full-

Wave-Spaced Array

Gain = 2.12



Phase changes
We have not discussed phase changes to the 
individual radiators here, because changing 
the phase results in tilting the main lobe, 
better known as beam tilt, or adding null fill 
to the array, and is usually used for those 
purposes rather than eliminating downward 
radiation.

Conclusion
This paper has shown the basic principles of 
how elevation patterns are formed and how 
by manipulating the number of radiators and 
the spacing of the radiators, and changing 
the amplitude of the feed to the radiators, 
we can reduce or eliminate downward radia-
tion.

Broadcasters are now required by the FCC to 
comply with tighter restrictions on levels of 
human exposure to RF radiation.  A working 
knowledge of antenna array theory makes 
techniques available to them to allow compli-
ance without resorting to drastic measures 

such as erecting new, taller towers or moving to remote sites.

Figure 17.  Field Elevation 

Pattern Plot, Four-Bay Half-

Wave-Spaced Array

Gain = 1.31

Figure 18.  Field Elevation 

Pattern Plot, Four-Bay Half-

Wave-Spaced Array with 

Reduced Amplitude to Outer 

Radiators  

Gain = 1.15

Figure 19.  Field Elevation 

Pattern Plot, Four-Bay Half-

Wave-Spaced Array with 

Reduced Amplitude to Outer 

Radiators

Gain = 1.01
Figure 20.  Field Elevation 

Pattern Plot, Six-Bay Half-

Wave-Spaced Array

Gain = 1.56

Figure 21.  Field Elevation 

Pattern Plot, Six-Bay Half-

Wave-Spaced Array

Gain = 1.41


