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Abstract

Intermodulation products, or spurs, can develop within the analog and digital transmitters in combined systems using
high-level injection. In some cases, spurs can result in sub-optimal signal quality or even cause stations to interfere
with each other's signals. The term spectral re-growth was coined to describe intermodulation products generated
when a digital transmitter is added to an analog transmission system.

In the early days of digital implementation, external filtering was often used to eliminate or reduce interference. As
the technology has evolved, however, only subtle adjustments to the system, such as the addition of a fine-match-
ing transformer to the dummy load, have proven necessary to reduce distortion and interference to meet the FCC's
digital FM mask.

There are two sets of spurs that have to be dealt with. The first set of spurs is generated within a digital transmitter
as the two sidebands interact. The second set of spurs is also generated in the digital transmitter and is a product
of each digital sideband combining with the analog signal. The signal level of these spurs is a function of the isola-
tion between the analog and digital transmitters.

This paper provides a basic overview of how high-level injectors work, their weaknesses, and how they can best be
optimized, as is essential to the design, installation, tuning and operation of a modern analog/digital FM station.
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The FCC digital mask 0 dBc reference

The characteristic FM analog/digital mask is shown in Figure 1. The Carriers Carriers
analog modulated carrier occupies +100 to 120 KHz, depending 191 OFDM 191 OFDM
on how hard the modulation is pushed. As will be shown later, -23 dBc
subcarriers (SCAs) can be part of this analog carrier. The digital
carriers start at +129 KHz and go out to +199 KHz. The digital sig-

-45.8 dBc/Carrier

nal is made up of two identical sets of 191 Orthogonal Frequency- \ /
Division Multiplex (OFDM) carriers. Just for general information,

the mode of modulation for this signal is Quadrature Phase Shift Total digital power
Keying (QPSK). The power levels are referenced to the analog -20 dBe

carrier or 0 dBc. One OFDM carrier is -45.8 dBC, when all 191 carri- oﬂhogona| Frequency_Division Mu|t|p|ex|ng
ers are present for one side-band the power level is -23 dBc, and Quadrature Phase Shift Keying
when both side-bands are added together the power level is -20

dBc. This is defined as the analog-to-digital ratio of 20 dB. Figure 1. Digital Power Distribution Referenced to

the Analog Carrier
Sideband-interaction spurs

In order to evaluate the first set of spurs that are generated inside of the digital A 328
transmitter, it is necessary to simplify the digital side bands. Figure 2 shows that the le kHz »
center frequencies of the digital side bands are at + 164 kHz from the center of the FM [— 164 —>

channel. That means that there are 328 kHz between the centers of the side bands. kHz

If the third-order intermodulation products are evaluated, you will see that there are a
set of spurs at + 492 kHz (Figure 3), between the second and third adjacent channels.
At the same time there are a set of fifth-order intermodulation products at + 820 kHz, mﬁmm
which is just above the fourth adjacent channels.

-164 kHz +164 kHz

Figure 2. Midpoints of the
Sidebands in Sideband-
Interaction Spurs
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Figure 3. Third- and Fifth-Order Sideband-Interaction Spurs at + 328 MHz Intervals
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Figure 4. Third-Order Digital-Sideband-to-Analog
Interaction Spurs

This second set of spurs is the result of the analog transmitter get-
ting into the digital transmitter. Figure 4 is a graphical illustration
of where the spurs occur.
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Figure 5. Sideband-Interaction and Digital-Sideband-to-Analog Interaction Spurs

Figure 5 shows a summation of all the groups of spurs that were

discussed in Figures 3 and 4.

Figure 6 is a photo taken of a spectrum analyzer showing the
output of a digital transmitter, and as you can see the spurs are ex-
actly where they are predicted to be and at a level that will cause

interference.

Figure 7 is a printout of the display of a spectrum analyzer,

imposing the spurs and the FCC digital mask.

The WMHKHK case study

Now for a case study. WMHKHK's transmitter site is located
north of Boston in the city of Peabody, MA (Figure 8).
When WMHKHK turned their digital transmitter on, spurs ap-
peared at + 828 kHz and caused interference to stations
WBOS and WIMN within 1/2 mile of WMHKHK's transmitting
tower.
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Figure 8. Three Boston Area Stations
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High-level injection
Before going further | would like to review the operation of a 10 dB high-power injector/combiner used to inject or com-
bine the digital signal into the analog AF stream, often referred to as high-level injection or high-power combining. fFig-
ure 9 is a cutaway view of such a high-powered injector. Because of the electrical characteristics of this large directional

coupler, 10% of the analog power is coupled into the dummy load port of the injector. This 10% loss has to be made up
by increasing the output power of the analog transmitter.

Digital
S—= 50-Q Load Input
10% of Analog Signal 10% of Analog

90% of Digital Signal .—v—1

Analog [ NI VAVAVAVAVAVAVAVAVAVAVAVAVAVAT A ]Co?ned

Input L J Output
90% of Analog Signal
10% of Digital Signal

Figure 9. High-Power Injector

The proper analog-to-digital signal ratio of 100:1 is needed at the output of the injector. In order to attain this ratio, the
digital transmitter output power is set at 10% of the analog power. Due to the losses of the directional coupler, 90% of
the digital power is conducted to the dummy load port, and only 10% coupled to the main transmission line, for a net
output of 1% of the analog power.

Correcting the interference

In order to analyze this interference a directional coupler was attached to the output of the digital transmitter and a
spectrum analyzer was attached to the forward loop of the coupler. The photo in Figure 6 clearly shows the interfering
spurs at + 820 kHz. The photo also shows a set of spurs at + 492 kHz, and even though these spurs are strong enough
to cause interference, there were no 2nd or 3rd adjacent stations in the immediate area that were affected.
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Figure 10. Analog/Digital Transmission System with High-Level Injection
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In order to reduce the power level of the + 820 kHz spurs a bandpass filter (digital mask filter) was installed between
the digital transmitter and the high-level injector (Figure 11).
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Figure 12 is a plot of the frequency
response of the filter being used to
suppress the spurs. from the plot, the

suppression of the spurs at + 820 kHz is
approximately 45 dB3.
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With the filter in place the spectrum analyzer was
attached as before and Figure 13 shows that the
+ 820 kHz interfering spurs are suppressed below
the noise floor of the analyzer.

The spectrum analyzer was then attached to the
directional coupler at the combined output of the
high-level injector. Figure 14 shows the suppres-
sion of the + 492 kHz spurs and the elimination of
the + 820 kHz spurs.

Figure 14. Filtered System Output

The spectrum analyzer was than moved outside
of the transmitter building for an off-air measure-

ment. Figure 15 is a photo of the WMHKHK channel §3.700MHZ ATTN RDE
as the reference. The spurs at + 492 kHz are not -31.@QDEM VIF ZKHZ
causing interference and UWJMN and WBOS show 200 . 0KNZ 1@ DB/
no interference. TKHZ RBW AVE @

SGLEWP MODE

The WBUR case study

The next case study was set up as an experiment
to see what could be learned from evaluating a
station that is in compliance with the FCC's digital
mask. WBUR is operating with the same style of
high level injection that was discussed above. At
this site there are two SCAs in the analog trans-
mission, which adds another aspect to the analy-
sis of this station’s operation.

6 Figure 15. Off-Air Measurement
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At the start of our experiment, we disconnected the digital transmitter from the injection system to calibrate the instru-
mentation to the analog transmitter with no interfering signal. We connected a spectrum analyzer to the forward loop of
the directional coupler attached to the output of the analog transmitter, as shown in the highlighted area of Figure 16.

Dummy Load

10% analog,

Dual Directional
Coupler

>€

Antenna

>€

Combined
Dual Directional
Coupler

Digital Injector (10 dB coupler)

90% digital
>
Analog
! Dual Directional
\ Coupler
~ 3 <
Analog
Transmitter

Figure 16. Analog Transmission System, WBUR

The analyzer was set up so that the peak power
level of the transmitter could be determined under
conditions of normal modulation but with no digi-
tal signal. In order to make this measurement, the
analyzer's video bandwidth (VBW) and resolution
bandwidth (RBW) were set at 30 and 300 kHz
respectively. Figure 17 shows the result. The FCC's
digital mask template, shown by the red line, was
placed in the memory of the analyzer and should
be disregarded for most of this discussion.
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Figure 17. Forward Peak Power Reference Level, WBUR



The analyzer was then connected to the reverse
loop of the same directional coupler and the mea-
surement obtained is an indication (Figure 18) of
the VSWR of the system. As you can see, there is
a 30 dB difference between the forward and re-
flected loops, which represents a VSWA of 1.05: 1.

Figure 19 shows the results of changing the
analyzer's video bandwidth and resolution band-
width to observe the same forward sample of the
modulated FM signal.

Figure 20 shows the corresponding reflected FM
signal. Here you can clearly see the standard ana-
log signal with the two SCAs in operation. If you
compare these two figures with Figures 17 and 18,
you will see that the VSUR is still 1.05: 1. Note
that the artifacts of the SCAs at approximately +
160 kHz from the center of the channel are at a
level that does not cause any interference.

Spectral Regrowth

Detector : Sample [Auta) *RBEW : 300 kHz
dBm Reflevel - 11 dBm Trigger Mode : Free Aun @VBW : 30 kHz
RefOffset: 0.0dB Tiace : Average ®5WT : 122 ms
n _1 Trace
Name Analyzer
Ref Level 11 dBm
1 Range: 10 dB/div
Result ail
\Averaging Sweep 100 of 100
Status
E Center Frequency . 909 MHz
Frequency Offset 0 Hz
Span : 2 MHz
19 | Ref Offset . 00 d
| FAF Attenuator © 30 8
; Preamplifier :0ff
29 Dynamic Aange : Low Distartion
RF Input : 50 Ohm
REW 1300 kHz
(VBW : 30 kHz
-39 SWT 122 ms
Trace Mode : Average
Detector : Sample [Auto)
49— I . ol ] 2 Trigger Mode : Free Aun
ATV VAP SPSIURN V- Trigge: Level e
Trigger Delay beme
Upper Limit : HD_Mask
59 Lower Limit e
Exteinal Reference : Disabled
Transducer St
59 Transducer (dB) s
Dale + 3/7/20068
Time 113520 PM
= | Instrument : FSH23-102775
83
Stert Frequency - B33 MHz2 Stop Frequency : 91 9MHz
Analyzer Center Frequency : 80.9 MHz Span : 2 MHz

Figure 18. Reflected Peak Power Reference Level, WBUR
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Figure 19. Forward Sample Modulated FM Signal, WBUR
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Now that we have our reference measurements, we reconnected the digital transmitter, as shown in Figure 21, and at-
tached our analyzer to the forward port of the directional coupler at the digital transmitter’'s output, expecting to see a

nice clean digital spectrum.
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Figure 21. Digital Input of Combined Transmission System, WBUR
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Instead, what we found (still ignoring the red

digital mask) was a complex presentation (Figure

292). Not only were there intermodulation prod- i

ucts, as discussed earlier, but the analog signal is
showing up in the digital output, meaning that a

component of the analog signal is coming out of
the digital transmitter. a2
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Figure 22. Combined Digital Forward Power, WBUR



Where is this analog signal coming from? To find
out, we attached the analyzer to the reflected port

Spectral Regrowth

8

of the same directional coupler (Figure 23), and

we found:

* The presence of the analog signal in the
reflected loop of the digital directional coupler

indicates the amount of analog power that is
being coupled to the digital port of the injec- &
tor. This is referred to as the isolation of the 4

injector.

52

* The analog signal level was higher going into
the digital transmitter than coming out of it. =
This attenuation of the analog signal in the 7
digital transmitter is called the turnaround loss

of the digital transmitter, which to our knowl-
edge had never been measured before.

82

82

* The digital signal level demonstrates that the
VSWR of the system is the same 1.05: 1 as the
analog. This must be a coincidence and not
inherent in the system design, because the analog and digital transmission paths are separate and different. This
return loss puts them below the noise floor of the analyzer, and they are no longer visible.
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Figure 23. Combined Digital Reflected Power, WBUR

So if the analog signal gets into the digital transmitter, does the digital signal return the favor? We connected the ana-
lyzer to the reflected loop of the analog transmitter's output coupler to find out (Figure 24).
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Figure 24. Analog Input of Combined Transmission System, WBUR
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Figure 25 shows the result. The digital signal does
indeed get into the analog transmitter. In order to
see what happens to the digital signal in the ana-
log transmitter, we attached the analyzer to the
forward loop of the analog transmitter's directional
coupler.

Compare the result, Figure 26, with Figure 19
above. Note the following:

* The shape and amplitude of the subcarriers
have changed.

e The subcarrier artifacts at = 160 kHz have
almost disappeared.

* There is no visible retransmission of the digital
signal.
Interestingly, although the subcarriers appear dis-

torted, there are no off-air reports of interference
or distortion of the subcarriers.

Spectral Regrowth
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Figure 25. Combined Analog Reflected Power, WBUR.
Note digital sidebands

Fig. 26. Combined Analog Forward Power, UWBUR

Now that we've looked at the analog and digital inputs and outputs, we now analyze the combined system output, as

shown in Figure 27.
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The plot in Figure 28 shows the analog with SCAs,
the two digital carriers, and intermodulation

products, all within the FCC's digital FM mask. The
station is operating without interference to other

broadcasters.
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Fig. 28. Combined System Output
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As more and more stations have added their digital signals using high-level injection, experience has shown that in
some cases, the overall spectral picture is not perfect. Although each transmitter's performance has been optimized,
some intermodulation products show up - though they may or may not cause interference to adjacent channels - and the
roll-off slope of the digital carriers at + 225 kHz shows the digital signal slightly exceeding the original iBiquity mask.
Inability to meet the spectral mask in this region is so prevalent that iBiquity has proposed relaxing the mask require-
ments out to + 250 kHz.

€xperimentally, it has been found that if you place a tuning slug in the transmission line between the dummy load and
the injector, you can optimize the performance of the injector and reduce the above problems. However, a fine-matching
transformer (Figure 30) gives the same result with a lot less effort and can be adjusted under full power.
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Figure 30. Optimized Injection System
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Figure 31 is a plot of such an op-
timized "almost-perfect” system
that meets the iBiquity digital
FM mask.

Conclusion
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Figure 31. Almost Perfection

Intermodulation products can develop within the analog and digital transmitters in combined systems using high-
level injection, resulting in suboptimal signal quality or even causing station-to-station interference. In the early
days of digital implementation, external filtering was often used to eliminate or reduce interference. However, as
the technology has evolved and we have achieved a better understanding of high-level injectors, subtle adjustments
to the system, such as the addition of a fine-matching transformer to the dummy load, have proven adequate to
reduce distortion and interference to meet the iBiquity digital FM mask.
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